We use COOKIES and other similar technologies that generate data for analyzes and statistics. You can block the saving of COOKIES by changing your browser settings. Detailed information about COOKIES and other technologies in Privacy policy.

COMPOSITES THEORY AND PRACTICE

formerly: KOMPOZYTY (COMPOSITES)

Selection of the matrix composition in designing composites on the magnesium matrix alloys reinforced with SiC particles

Katarzyna N. Braszczyńska, Andrzej Zyska, Janusz Braszczyński Politechnika Częstochowska, Katedra Odlewnictwa, al. Armii Krajowej 19, 42-200 Częstochowa

Annals 3 No. 8, 2003 pages 353-358

DOI:

keywords:

article version pdf (1.70MB)

abstract Magnesium matrix composites have attracted considerable interest mainly due to their low density and increased specific modulus, stiffness, strength and wear resistance. Factors affecting the structure and properties of magnesium matrix composites reinforced with ceramic particles are schematically presented in Figure 1. In this work microstructural analyses of composites produced on the base of different magnesium alloys reinforced with silicon carbide particles are presented. Pure magnesium and magnesium alloys containing: (i) 9 wt.% Al (0.8 wt.% Mn), (ii) 6 wt.% Zn (and 1 wt.% Zr) and (iii) 3 wt.% rare earth elements (RE) were used as the matrix. Composite samples containing about 20 wt.% of hexagonal SiC particles of the 6H type and the maximum diameter 32 μm were obtained by gravity casting of the mechanically mixed suspension. All composites were characterised by a very good wetability of SiC particles by molten magnesium and a uniform distribution of the reinforcing phase within the matrix (Fig. 2). The presence of the Mg2Si intermetallic phase as a component of the Mg+Mg2Si divorced eutectic was determined in the composite matrix (Fig. 2). This compound forms as a product of the reaction between the magnesium and the SiO2 film covering the SiC particles from natural process of the oxidising them. The transmission electron microscopy investigations showed that the SiCp/Mg interfaces had an adhesive character of the joint and were free of precipitates and strongly connected (Fig. 3). Composites prepared on the base of the Mg-9 wt.% Al (and also about 0.8 wt.% Mn) and Mg-6 wt.% Zn (about 1 wt.% Zr) were also characterised by the same type of the interfaces between components (Fig. 5). Any reactions between components in these materials were determined. In the case of composites obtained on the base of Mg-3 wt.% RE the formation of wide reaction layers at the interfaces between the SiC particles and matrix alloy was observed (Fig. 6). TEM analyses allowed the determination of the presence of RE3Si2 precipitates at the interfaces between components and also in the matrix with characteristic needle-like morphology (Fig. 7). All the rare earth elements reacted with SiC particles to created the RE3Si2 precipitates and caused the destruction of the reinforcing phase. Influence of the particular alloying elements on the type of the component interfaces in magnesium matrix composites is presented schematically in Figure 8. Key words: magnesium matrix composites, SiC particles, alloying elements, microstructure

Wykonanie: www.ip7.pl