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DAMAGE PREDICTION HYBRID PROCEDURE FOR FRP LAMINATES 

SUBJECTED TO RANDOM LOADS 

In this paper, a hybrid procedure is formulated in order to predict the damage of a laminate composed of UD FRP 

laminae under random loading. This procedure is based on two pillars: a stiffness degradation model (SDM) combined with 

an energy approach taking into account the effect of load ratio in addition to a system of equations generated by SSDQM 

(space state differential quadrature method), which we solved with a novel technique. The outputs of SSDQM, previously used 

for free vibration behavior analysis of composite structures, are used with those of SDM to predict the damage failure of 

a composite laminate subjected to random loading. The obtained results correlate very well with the experimental ones and an 

extensive comparison with other models validate the accuracy and convergence characteristics of this hybrid procedure. 
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INTRODUCTION  

The life of a structure can come to a sudden end, or 

last longer, but only for a limited period. This latter 

case is usually accompanied by a reduction in yield, 

known as aging. Under a high load, a structure or com-

ponent can deteriorate in one fell swoop, while it can 

actually withstand lower loads. On the other hand, the 

same structure or component can also be ruined under 

lower loads if they are applied over longer periods,  

either a constant amplitude (static) or variable ampli-

tude (fatigue). These loadings sustained by mechanical 

structures are induced by external stresses (forces, 

thermal, accelerations, etc.). The phenomenon of the 

degradation of the properties of a material due to the 

application of loads that fluctuate over time is called 

fatigue and the resulting ruin is called fatigue failure. 

Due to the complexity of the fatigue damage process 

in composite materials, predicting their fatigue life is of 

vital importance. Nonetheless, proper modeling of the 

damage evolution is the foundation for predicting the 

fatigue life of composite structures, which enables ap-

propriate evaluation of the structure performance in its 

early cycles of life and prevents catastrophic failures. 

Some authors based their research on residual strength 

or stiffness. Yao and Himmel [1] predict the residual 

strength caused by fatigue damage in glass and carbon 

fiber reinforced plastics. To predict and investigate the 

effect of high-stress peaks on the fatigue life of carbon 

fiber reinforced plastics, Aghazadeh and Majidi [2]  

applied residual strength. Another stiffness-based 

model to predict lifetime developed in Ref. [3] is also 

considered quite a good model to predict the residual 

fatigue life of composites. However, the predictions 

employing these models noticeably diverge from the 

experimental values and mostly yield a high percent 

error in fatigue life prediction. 

In recent decades another range of models, stiffness-

based models [4-7], has been developed. The damage 

degree is quantified by measuring the stiffness of the 

material. Nevertheless, most of these models possess 

two major deficiencies, the first is a large number of 

parameters which require extensive experimental data 

to calculate them, while the second deficiency is their 

inability to accurately simulate the damage progress in 

its well-known three stages [7-9]. In addition to the 

aforementioned shortcomings, most of these models are 

used to validate a specific type of composite and cannot 

evaluate in a wide range of loading levels [1, 10, 11]. 

On the other hand, the vibration analysis of compos-

ite structures is also a large area of research encourag-

ing researchers to ensure the usability, durability, and 

safety during the composite structure’s lifetime. Many 

works have been conducted in this trend [12-22], and 

a number of models and methods have been developed. 

Among them the state space method combined with the 

differential quadrature method abbreviated as SSDQM 

stands out. 

In this paper we aimed to resolve the discussed limi-

tations of stiffness-based models by means of a hybrid 
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damage prediction procedure. It consists in coupling  

a stiffness-based model with SSDQM, while relying 

both on an energy approach to predict damage rupture 

[23] and the well-known Palmgreen Miner rule [24]. In 

the first place, SSDQM is solved by a new proposed 

technique different from the ones found in the literature.  

A coupling algorithm is developed to survey the damage 

progress of the composite laminate and consequently 

predict its damage rupture. Numerical validation of the 

hybrid procedure demonstrates that most of the pre-

dicted lifetimes lead to quantitatively better estimations.  

NOVEL TECHNIQUE FOR SOLVING SSDQM  

In works [14, 15, 21], the authors combined the state 

space method (SSM) [17-20] with the differential quad-

rature method (DQM) [12-14] to establish an equation 

system (1) [17] and each one proceeds in his own way 

to solve it.  ���� = ����	Δ (1) 

where: 

Δ = ��			�							
			��� 			����� ,� = [��			�	 		… 			�
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The components of matrix ∆ are vectors defined as 

state variables vector Z. N is the discretization number, 

k represents the k
th 

ply of the laminate, I is the identity 

matrix and ���(�) are the weighting coefficients [16]  

dependent on Chebyshev-Gauss-Lobatto points xi [17]: 

�� =
�
2
�1 − ��� �� − 1�� − 1

! ,					� = 1, 2, … , , 

Coefficients �� are defined and given in reference 

[17], which depends on the elastic material constants, � 

is the mass density and � is a circular frequency, while �� is a constant parameter depending on arbitrary posi-

tive integer n and is expressed as the following: ��= 
��

�
. 

For a specific problem, the boundary conditions at 

the edges (� = 0 and � = a) of the studied composite 

laminate must be taken into consideration so that  

a unique solution of equation (1) can be obtained.  

By applying boundary conditions, we add subscript ‘q’ 

to equation (1) to indicate it: ����� = ��
(�)�� (2) 

Explicit expressions of matrix ���
(�)

 and �	�

(�)
 for 

each boundary condition case are given in Appendix B 

of Ref. [17]. 

Many methods are presented in the literature to 

solve system (2); Xu and Ding [22] used algebra rules 

and Cayley-Hamilton theorem to solve it. Direct use of 

the global transfer matrix is one of the methods found 

in literature [15-17] to solve this system. In this work, 

the global transfer matrix is also used to solve system 

(2) but in combination with the proposed coupling joint 

matrix and designated as JC. The novel technique de-

veloped here to solve expression (2) consists in the fol-

lowing steps: 

- First, the vector of the state variables for ply k is 

written as: 
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where i takes ‘0’ (inferior face of the ply) or ‘1’ (supe-

rior face of the ply). 

- Second, the following formula is supposed to as-

sure the continuity condition between two adjacent 

plies: JC⋅ ) ∆�
(�)

∆�
(���)

* = 0 where +� =	[I –I] is called 

the coupling joint matrix which is composed of 

identity matrix I and its negative form (–I). It 

should be noted that identity matrix I has the same 

dimensions as the length of vector	∆. 

- Third, the loading conditions at the superior inter-

face and the inferior one are expressed respectively 

as: +���. ∆�
�= ,���	and		+���. ∆�

�= ,���. The inferior 

face does not submit any mechanical forces where 

vector force (stresses) finf is zero and consequently 

matrix Jinf is equal to zero. On the other hand, the 

laminate’s superior face is submitted to bending 

loading where vector force fsup and matrix Jsup are 

written as the following: 
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where i1, i5 and i6 are the matrix identities having di-

mensions adequate to the state variables vector lengths 

Z, Txz and Tyz respectively. We note also that the dimen-

sion of Jinf matrix is the same as matrix Jsup. 

The gathering of all the above expressions of the 

joint coupling matrix lead to general formula (6):   

J ⋅	∆	= f  (6) 

with: 

J = diag [+��� +��+��… +��+���]; 

∆= [.∆�
���/� 0∆�

���

∆�
�	�
1� … 	0∆�

�����

∆�
���

1� .∆�
���/�] ; 

f = [,���� 0�	0	 … 0�,���� ] where 0i is a zero vector of  

the i
th

 ply. 

For any ply k of a composite laminate, the solution 

proposed to matrix system (2) is written as follows:  

)∆�(�)
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* = ��
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Assembling all the plies of the laminate structure 

gives: 

∆= �⋅∆� (8) 

with 

M = diag[M1 M2 … Mm-1 Mm] ;  

∆�= [(∆�
���

)�	(∆�
�	�

)� … 	(∆�
(���)

)�(∆�
(�)

)�]� . 

By substituting equation (8) into equation (6) system 

(9) is obtained:  

J⋅M⋅∆� = f (9) 

Finally, the solution of system (9) gives all the state 

variable vectors in both the superior and inferior faces 

of each lamina.   

LIFETIME ASSESSMENT PROCEDURE 

Together with the outputs given by the solution of 

the system matrix developed in the previous section, the 

procedure that we aim to construct in this section is also 

based on both the stiffness degradation model (SDM) 

[25] and an algorithm used for an energy damage pre-

diction model [23].   

The stiffness degradation model category is one of 

the most popular manners to predict the damage of 

structures [4-7, 25, 26], which quantify the extent of 

damage by measuring the stiffness of the material. 

Formula (10) is used to construct the present procedure: 

4�4� = �	 − ��56	( 6� 
1 −

6� )  (10) 

where �1 and �2 are the material parameters depending 

on ultimate static force 7!, stress ratio 8� and minimal 

force 7� for which failure is not reached.   is the criti-

cal lifetime for which the residual stiffness drops sud-

denly depending on the level of applied load. 

The second pillar on which this procedure depends 

is the energy approach [23] used to determine two ma-

terial parameters, ∅ and 9, of formula (11), in addition 

to the lifetime at rupture Nmax 

 =
 �"�

1 + :�∅�#�$� (11) 

Based on these pillars, the algorithm developed for 

the procedure is scheduled as follows: 

- Initially, Ergodic, Gaussian, stationary and random 

loading (designated as EGSR) is considered and 

thanks to the rainflow algorithm [23, 25] we obtain 

for each cycle ‘i’ mean value Fm,i and amplitude Fa,i. 

These values obtained for elementary cycle ‘i’ are 

used as inputs for SSDQM to calculate the six com-

ponents of displacements and stresses on each point 

of the discretized laminate. Then, maximum deflec-

tion ;�"�,� occurring in the middle of the laminate is 

used to assess initial stiffness k0,i by means of  

expression (12); consequently, the minimal defor-

mation energy of cycle ‘i’ is deduced via expression 

(13) 

Fa,i = k0,i ;�"�,� (12) 

<���,� =
7",�	

24�,� (13) 

- In the second step, SDM (10) is used to find final 

stiffness kf,i for each cycle ‘i’ which is used to de-

termine the maximal deformation energy (14) of the 

considered cycle ‘i’ 

<�"�,� =
7",�	

24�,� (14) 

- Thirdly, we calculate the loading parameter =� of 

each elementary cycle ‘i’ via expression (15). There-

fore, by using the energy approach [23] material pa-

rameters 	∅� and	9� as well as rupture lifetime Ni will 

be obtained  

=� = 8,� ∗
7�,�7�"�,�

 (15) 

- Finally, the well-known Palmgreen-Miner rule [24] 

is adopted to predict lifetime ‘T’ of the composite 

laminate examined as the following: 

� =
1∑ 6� � (16) 
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To sum-up, the figure (Fig. 1) clearly shows the 

steps of the procedure developed above. 

 

 
Fig. 1. Hybrid procedure for damage prediction of composite laminate 

RESULTS AND DISCUSSION 

The material used for the experimental study was  

a quasi-isotropic graphite/epoxy composite laminate 

[45/0/90]3S and the tests were performed on an MTS 

810 servo-hydraulic machine [25, 27]. Two variable 

amplitude fatigue experiments were conducted where 

four specimens were tested for each experimental case 

defined by mean value Fm and standard deviation ? of 

the loading. 

In order to validate the procedure developed in this 

work, two EGSR loadings were simulated identically to 

the experimental ones [25, 27]. In the first case, the 

mean value of loading was Fm = 2000 N and its stan-

dard deviation was ? = 500 N, while in the second case 

the mean value and the standard deviation were Fm = 

= 1500 N and ? = 350 N respectively. The experimental 

lifetimes are given in Table 1 together with our model 

predictions and some model results from the literature 

[23, 25, 27, 28]. 

The hybrid procedure predictions are quite identical 

to the energy model [23] results and are very close to 

both the statistical model [27] and the stiffness degrada-

tion model [25] ones. Niesloney’s models [28] are too 

divergent in comparison with experimental tests [25] 

and all the models presented in Table 1. 

On the other hand, we found that the difference be-

tween our procedure predictions and experimental life-

times is very acceptable, especially for the second ex-

periment which does not exceed 5 percent, whereas in 

the first experiment this percentage is much higher.  

Despite that, all the other models are also in the same 

order of magnitude as our hybrid model, but this differ-

ence can be explained by the fact that all these models 

used a linear cumulative damage rule to assess lifetimes 

which does not take into account the load sequence or 

interaction effects.  
 

TABLE 1. Comparison between hybrid model predictions, 

experimental lifetimes, and some literature models 

Lifetime (in cycles) 

Loading 1: 

F
m 

= 2000 N 

 �	= 500 N 

Loading 2: 

F
m 

= 1500 N �	= 350 N 

Experimental test [25] 4410 54517.5 

Energy model [23] 6504.9 57909 

Statistical model [27] 5900 58700 

Stiffness degradation 
model [25] 

5100 52300 

Niesloney's first model 
[28] 

1800 3000 

Niesloney's second 
model [28] 

3700 38000 

Proposed hybrid  
procedure  

6454.8 57883 

CONCLUSIONS  

The space state differential quadrature method is 

solved with a new technique and a series of stresses and 

deformations are obtained for each load cycle. SSDQM 

is usually used to analyze the free vibration behavior of 

different composite structures; in this work it was ex-

ploited in conjunction with one damage prediction 

model namely the stiffness degradation model (SDM) 

and an energy approach to predict the damage rupture 

of a composite laminate.  

Satisfactory convergence of this hybrid procedure is 

verified by numerical comparison with other numerical 

models and also versus experimental tests. Hence, this 

procedure presents an ambition solution to monitor and 

predict damage evolution inside the laminate.  
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