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FUZZY SETS - FATIGUE TESTS 

In this study, the results of fatigue tests using fuzzy set methodology are considered. Cyclic loading causes damage, 

reducing the strength until the material can no longer sustain even service loading. The experiments demonstrate the scatter 

of results. Fuzzy set analysis has been proposed in order to estimate the uncertainty in the evaluation of stiffness and critical 

number of cycles corresponding to final fatigue damage. The results of fatigue-life tests using fuzzy set methodology are also 

considered when the experimental results are given in the form of a histogram. The fuzzy set and vertex method in 

conjunction with  finite element (FE) computations are introduced to evaluate buckling loads. 
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ZBIORY ROZMYTE - BADANIA ZMĘCZENIOWE 

Przedstawiono analizę wyników badań zmęczeniowych z wykorzystaniem metodologii zbiorów rozmytych. Cykliczne 

obciążenie powoduje uszkodzenia, co zmniejsza wytrzymałość aż do momentu, gdy materiał nie może przenosić nawet 

obciążenia eksploatacyjnego. Eksperyment wykazuje znaczny rozrzut wyników. Zaproponowano zastosowanie zbiorów 

rozmytych do oszacowania niepewności w ocenie sztywności i krytycznej liczby cykli odpowiadającej zmęczeniowemu 

zniszczeniu. Rozważono także wykorzystanie zbiorów rozmytych do analizy wyników badań zmęczeniowych, gdy wyniki 

doświadczalne są podane w formie histogramu. Zbiory rozmyte i metoda vertex z wykorzystaniem metody elementów 

skończonych (MES) zostały wprowadzone do oceny obciążenia krytycznego. 

Słowa kluczowe: logika rozmyta, zbiory rozmyte, badania zmęczeniowe, płyty kompozytowe 

INTRODUCTION  

Composite structures are usually made up of many 

layers. Each  layer may have different thicknesses and 

fiber orientations. Experimental data, especially for 

fatigue tests, have ranges of scatter affected by variabil-

ity in the material microstructure from one test speci-

men to another, of course, if we do not want to also 

mention the effects of stacking sequences etc. Typi-

cally, the variability in material parameters makes it 

difficult to accurately predict the response of structural 

components and significantly affects the reliability of 

designs, see e.g. monograph [1]. Therefore, commonly 

the probability theory is employed to characterize vari-

ability in material parameters. The material characteris-

tics are treated as random variables with assumed prob-

ability density distributions. However, the critical 

review (see Yang et al. [2]) of the existing probabilistic 

descriptions of fatigue tests demonstrates evidently that: 

(i) there is no unique approach (or methodology) that 

may be used for the statistical characterization of fiber 

composite fatigue life data, (ii) there is a lack of a uni-

versal probability density distribution which may  

describe fatigue tests for composite materials, though it 

is commonly assumed that fiber reinforced materials 

follow Weibull distribution - see e.g. Whitney [3], Hahn 

& Kim [4], (iii)  the construction of probability density 

distributions requires sufficient (commonly a great 

number) experimental data. Nevertheless, it should  

be emphasized that we do not know in advance any-

thing about the nature of the material parameters, e.g., 

can they be treated as stochastic or non-stochastic  

parameters? The existence or lack of appropriate prob-

ability density distributions is a hypothesis only and the 

correctness of such a hypothesis can be verified on the 

basis of existing experimental data. Thus, for situations 

where the material parameter values are modeled  

as non-stochastic variables, the fuzzy set approach has 

been proposed as a better and more natural approach. 

The latter hypothesis is more general than previously 

mentioned. The scatter of properties has a different 

origin, but in general, it may be divided and classified 

in the following manner: (1) geometric properties  

(imperfections), (2) physical and mechanical properties, 

(3) environmental effects (exploitation), (4) technology 

understood in the sense of geometric dimensions  
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but as an origin of local defects, a scatter of fiber direc-

tions etc. 

Different kinds of methods are investigated for dif-

ferent types of uncertainties. Oskay and Fish [5] cali-

brated material properties in a deterministic fashion 

with the aid of genetic algorithms and gradient-based 

techniques. Jiang et al. [6] proposed the deterministic 

model to identify the uncertain elastic modulus of 

braided composites using modal data. Mustafa et al. [7] 

presented a probabilistic model for estimating the fa-

tigue life of composite laminates using a high fidelity, 

multi-scale approach called M-LaF (Micromechanics 

based approach for Fatigue Life Failure). They devel-

oped a unified framework for the representation and 

quantification of uncertainty present in the fiber and 

matrix properties with the use of the Bayesian inference 

approach in order to calculate probabilistic composite 

fatigue failure. Chandrashekhar and Ganguli [8] per-

formed probabilistic analysis using the Monte Carlo 

Simulation on a refined composite plate finite element 

model to calculate the statistical properties of the varia-

tion in modal parameters of a cantilever composite plate 

due to structural damage and material uncertainty. 

For composite structures, due to the limited avail-

ability of test samples or research data, a various scatter 

of results (e.g. [9]) is observed. Moens and Hanss [10] 

presented an overview of the research activities on non-

probabilistic finite element analysis and its application 

in the representation of parametric uncertainty in  

applied mechanics. Altmann et al. [11] introduced  

a fuzzy-probabilistic approach to assess the durability 

of strain-hardening cement-based composites. Karbhari 

and Stein [12] described the application of a fuzzy 

probabilistic approach to reflect the impact of the inher-

ent uncertainty in determining the reinforcing fibers of 

polymer jackets for the seismic retrofit of columns. 

Rajmohan et al. [13] used grey fuzzy logic to optimize 

drilling parameters that minimizes the damage caused 

during drilling. Muc and Kędziora [14, 15] formulated 

the optimization problem as a λ-problem in which the 

maximum of the λ parameter was sought. Bohlooli et al. 

[16] presented a suitable model based on fuzzy logic to 

predict the compressive strength of inorganic polymers 

with seeded fly ash and rice husk bark ash. 

Syamsiah Abu Bakar et al. [17] proposed the role of 

input selection using a neuro-fuzzy approach to predict 

the physical properties of degradable composites, 

namely the melt flow index and density. Vassilopoulos 

and Bedi [18] used an adaptive neuro-fuzzy inference 

system to model the fatigue behavior of a multi-

directional composite laminate. Jarrah [19] proposed  

a hybrid neuro-fuzzy method that gave more accurate 

fatigue life predictions of unidirectional glass fiber/ 

epoxy composite laminates. Rassbach [20] developed 

a model based on the mathematical methods of  

fuzzy-logic which can describe the plasto-mechanical  

behavior of functionally gradient materials during the  

deformation process. 

Therefore, in this way the impreciseness (uncer-

tainty) of the experimentally obtained data in our ap-

proach is described using  fuzzy sets theory. The appli-

cation of fuzzy set methodology is presented in refs. 

[14, 15, 21-24]. It is possible to construct a membership 

function for the measured value, hence we intend to 

adjust to the membership function representation. With 

the use of the above-mentioned construction, it is possi-

ble to build a Fuzzy Knowledge Base or probabilities 

for a given set of experimental data. We propose the 

fuzzy set method for the correct and concise evaluation 

of various fatigue properties (e.g. stiffness). We demon-

strate the applicability of fuzzy set theory and the vertex 

method to analyze the limit load carrying capacity of 

structures in conjunction with finite element (FE)  

computations. 

FUNDAMENTAL DEFINITIONS - 
REPRESENTATIONS OF FUZZY SETS 

The data “integer less than 10” is the definition of 

characteristic function ΠA and is represented in the fol-

lowing way: 
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that yields a value of 1 for each element of space IN 

that belongs to set A and a value of 0 for each element 

that does not. The above representation is commonly 

called a crisp set. However, this concept cannot be used 

directly as we intend to characterize the typical property 

for composite materials, e.g. the failure of CFRP under 

tension occurring as tensile strain εx is equal to the  

ultimate value of 0.015. The characteristic function  

of this set is depicted in Figure 1a. For the three-

dimensional analysis, all the components of the strain 

tensor can be evaluated in a similar manner. A problem 

arises if the linguistic term “failure under tension” has 

to be described. The value of a failure strain in compo-

sites depends on various parameters such as the fiber 

and matrix materials, loading conditions, porosity, envi-

ronmental effects, etc. It is well-known that from the 

micromechanical point of view that failure starts from 

microcracks in the matrix for strain values much lower 

than the εallowable value. In addition, the εallowable value is 

usually an average value characterizing rather a scatter 

of a random number of macrocracks appearing at the 

εallowable strain level. Therefore, for some specimens one 

can observe the final (macroscale) failure as εx is equal 

to 1.1 εallowable or to 0.9 εallowable. As may be seen, the 

variability (fuzziness) is taken to be equal to ±10%, 

which falls within typical ranges of scatter in experi-

mental data for static tests. A possible solution to this 

problem is to generalize the definition of the character-

istic function in a way that it yields values from interval 
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[0, 1] and not just the two values of set {0, 1}. This 

leads to the notion of a fuzzy set. Fuzzy set µ of X is 

a function that maps space X into the unit interval, i.e.: 

 [ ]1,0: →Xµ  (2) 

Value µ(x) denotes the membership function of x to 

fuzzy set µ. Figure 1b shows (subjectively defined) 

a membership function of fuzzy set µ describing the 

linguistic meaning of the term “failure under tension”. 

The use of fuzzy sets to formally represent vague data 

is often done in an intuitive way because in many appli-

cations there is no model that provides a clear interpre-

tation of the membership degrees, though we want or 

we try to base it on various experimental data. 

 

a)
  

 

b)
  

 
Fig. 1. Representation of  term “failure under tension”: a) crisp set,  

b) fuzzy set  

Rys. 1. Graficzne przedstawienie określenia “zniszczenia podczas 

rozciągania”: a) zbiór ostry, b) zbiór rozmyty 

The application of fuzzy methodologies requires the 

knowledge of the membership functions of fuzzy quan-

tities. In general, fuzzy numbers are sets that represent 

numeric quantity. It can be done in a variety of ways. 

Of course, there are different possibilities to determine 

and represent membership functions characterizing  

a fuzzy set. If subspace S contains only a finite number 

of elements,  fuzzy set µ of X will be defined by speci-

fying for each element x∈X its membership degree µ(x). 

If the number of elements is very large or a continuum 

is chosen for X, then µ(x) can be better defined by 

a function that can use parameters which are adapted to 

the actual modeling problem. For instance, if we want 

to represent the term “Young’s modulus is equal to  

200 GPa” in the sense of a fuzzy set having a finite 

amount of experimental data, we can select one of the 

different representations given in Figure 2. 

One of the possible fuzzy set representations was 

presented there. Another approach is the so-called hori-

zontal representation of fuzzy sets. This is introduced 

by using their α-cuts instead of  membership functions 

µ(x) which are called vertical representations. 

Let µ∈F(x) and α∈[0, 1]. The set is called the α-cuts 

of µ: 

 [ ] ( ){ }αµµ
α

≥∈= xXx  (3) 

Let µ be the triangular function on IR given in Fig-

ure 3. The α-cuts of µ are in this case defined as follow: 
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Fig. 2. Various fuzzy representations of term “Young’s modulus is equal 

to 200 GPa” 

Rys. 2. Różne typy funkcji przynależności opisujące termin „moduł 

Younga równa się 200 GPa” 
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Fig. 3. Definition of α-cuts  

Rys. 3. Definicja przekrojów α 

VERTEX METHOD 

Let us introduce N fuzzy parameters describing the 

material or geometric parameters of the considered 

composite structure. The membership functions are 

discretised using several α-cuts - Eq. (4). Considering 

the left and right end points of α-cut  intervals [µ]α (see 

Figure 3) for all the fuzzy parameters, one can find the 

total number of combinations Nc/α per α-cut in the fol-

lowing form: 

 



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=
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=
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10for 2

/

α

α

α
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c
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An output response denoted by p is an unknown 

function of  input fuzzy parameters xi (i = 1, 2, …, N), 

so that: 
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 ),...,(
1 N

xxfp =  (6) 

Using the α-cut concept combined with binary rep-

resentation (5) of fuzzy parameters xi (i = 1,2,…,N) 

relation (6) can be rewritten in the abbreviated form: 

 
c/αj NjCfp  ..., 2, 1,     );(

,
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λ

 (7) 

Since output response p as a function of fuzzy pa-

rameters is a fuzzy set, the corresponding interval in p 

is obtained from  relation (6): 
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As may be seen, relation (8) allows one to obtain 

a scatter of the output parameters and then to build the 

appropriate probability distributions and reliability 

functions by a sweep of α-cut at different possibility 

levels. 

In order to conduct the computations and to evaluate 

the upper and lower boundaries of output response (8), 

it is necessary to outline the deterministic method of the 

definition of function f given in Eq. (6). It can be  

defined in a purely analytical way or alternatively in 

a purely numerical way. As  may be noticed, the vertex 

method resembles here the Monte Carlo simulation 

method where the output response also has a determi-

nistic, and therefore unique form. Function f existing in 

Eq. (6) may describe an arbitrary failure criterion  

for composites, e.g. buckling, delamination, first-ply-

failure etc., whereas symbol p denotes the correspond-

ing value of the failure load. 

FUZZY LOGIC ANALYSIS OF EXPERIMENTAL 
DATA 

There are, generally, two kinds of fuzzy sets: 

1. numbers that represent an approximate numeric 

quantity 

2. qualifiers that characterize open-ended concepts; 

these sets provide the framework for describing un-

bounded concepts (or concepts that are theoretically 

unbounded). 

Fuzzy numbers create an important class of fuzzy 

sets that are spread around a central value. The general-

ized approximation curve indicated by around or close 

concepts, produces a membership function for the fuzzy 

assertion representing a fuzzy space of all the numbers 

that are around or close to a central value. 

In general, there are five important classes of fuzzy 

contours describing fuzzy numbers: (i) triangular 

curves, (ii) trapezoidal (shouldered) curves, (iii) π (pi) 

curves, (iv) β (beta) curves and (v) Gaussian curves. 

They are defined e.g. in paper [14]. 

For composite materials, microscopic defects are 

coalesced and they grow as micro-cracks in structural 

materials throughout the various loading histories. The 

membership for failure is directly related to the damage 

variable both for static and fatigue loading conditions. 

In the research presented in paper [24], the spatial non-

uniformity of material properties at the microscopic 

level is to be taken into account from experimental data 

obtained during fatigue tests conducted for plies ori-

ented at 0°, 45° and 90° in tension and compression. 

When processed, this information will be represented 

by the lower and upper boundaries of the stiffness deg-

radation, i.e. as modulus E(n) versus the number of 

cycles n relationships. E(n) denotes the longitudinal 

elastic modulus for 0° fiber orientations, transverse 

elastic modulus for 90° fiber orientations and shear 

modulus for 45° fiber orientations. These sets of lower 

and upper boundaries will be available independently 

for 0°, 45° and 90° orientations. With the use of the 

fuzzy logic methodology described in this paper and 

[14, 22-24], the upper and lower boundaries of stiffness 

E(n) are plotted in Figure 4. These figures illustrate the 

form of diagrams obtained for fibers oriented at 0° for 

specimens subjected to tension. Nf denotes fatigue life. 
 

 
Fig. 4. Degradation of  laminate (glass fiber/epoxy resin) stiffness vs. 

number of cycles (mean values - M, upper - R and lower - L 
bounds, respectively) 

Rys. 4. Degradacja sztywności laminatu (włókna szklane/żywica 

epoksydowa) w zależności od liczby cykli (wartości średnie - M, 
kres górny - R, kres dolny - L) 

Determining the membership functions is difficult as 

Norwich et al. [25], Dombi [26] point out. Thus, the 

first attempt at or trial in building the membership func-

tions can be based on statistical data. However, it is to 

be noted that not all fuzzy quantities have statistical 

data to define their membership functions. If statistical 

data exists, the membership function can be determined 

as follows: 

 )](max[/1),()( xxx ρλλρµ ==  (9) 

where ρ(x) is a probability density function or its esti-

mate derived from the histogram of feature x used to 

define the fuzzy set. 

Let us consider the results of fatigue-life tests using 

fuzzy set methodology, when the experimental results 

are given in the form of  a histogram. In each part of the 

histogram, we intend to adjust to the membership func-
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tion representation in the following manner (see also 

Figure 5): 

1. to find the mean value of fatigue life )( jfN  in the  

i-th interval  

2. to prescribe that the value of the membership func-
tion corresponding to the mean value of the fatigue 

lives is equal to 1  

3. to assume that the values of the membership func-
tion at the ends (i.e. Nf(i)

L
 and Nf(i)

R
) of the i-th in-

terval are equal to 0  

4. to determine the value of the membership function 

for the given experimental data 
exp

)(if
N  
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Fig. 5. Experimental results as: a) histogram, b) membership function 

Rys. 5. Wyniki badań w postaci: a) fragment histogramu, b) funkcji 
przynależności 

More information on using the above-mentioned 

construction can be found in [15]. With the use of the 

above-mentioned construction, it is possible to build 

a Fuzzy Knowledge Base or probabilities for the given 

set of experimental data. 

FUZZY SET ANALYSIS OF LIMIT LOAD CARRYING 

CAPACITY - EFFECTS OF SCATTER  

OF MECHANICAL PROPERTIES 

For composite structures, the concept of the limit 

load carrying capacity (LLCC) was introduced by Muc 

et al. [27]. Briefly speaking, the fundamental idea of 

LLCC is based on determining the lower limit enve-

lopes of different failure loads corresponding to the 

analyzed composite structure subjected to prescribed 

loading and boundary conditions and having a uniquely 

defined laminate topology. As different failure loads we 

understand failure loads corresponding to various fail-

ure modes encountered in the analysis of composite 

structures, i.e. delaminations, matrix cracking, global or 

local buckling, fiber debonding etc. In detail, in the 

present work one of several types of failure modes are 

considered: global buckling. 

To evaluate global buckling loads, numerical studies 

are performed on a square plate under compression. The 

numerical FE analysis is carried out in the elastic geo-

metrically linear range only, with the use of four-node 

quadrilateral shell elements (NKTP 32) employing the 

first order transverse shear deformation plate/shell the-

ory. The geometric and material characteristics are the 

following: Ex = 280 GPa, Ey = 12 GPa, Gxy = 7 GPa,  

Gxz = 0.6 Gxy, Gyz = Gxy, νxy = 0.28, t/a = 0.1, where t is 

the plate thickness and a is the plate length, respec-

tively. The vertex method is introduced herein to evalu-

ate buckling loads in a numerical manner. Four parame-

ters have been considered as fuzzy variables: total 

thickness t, Young's moduli Ex, Ey and Kirchhoff 

modulus Gxy. 

In the present study, it is assumed that the member-

ship functions of the fuzzy parameters are triangular as 

shown schematically in Figure 3 (see also Eq. (4)) 

where: 

 mbma
ba

m ⋅=⋅=
+

= 1.19.0,
2

 (11) 

and m is an average value for each of the fuzzy parame-

ters, for instance it can be evaluated from the experi-

mental data. As it may be seen from relation (11), the 

variability (fuzziness) is taken to be equal to ±10%, 

which falls within typical ranges of scatter in experi-

mental data for static tests.  

The distributions of buckling pressures versus the 

angle of fiber orientations at α = 0, 0.5 and 1.0 are  

plotted in Figure 6. The upper and lower boundaries  

(α = 0 and 0.5) of the curves drawn for α = 1.0 are not 

symmetric. Interval (8) is strongly dependent on the 

fiber orientations as well as on the wave number in 

buckling. 
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Fig. 6. Distributions of buckling loads for compressed angle-ply plates  

Rys. 6. Bezwymiarowe obciążenia krytyczne dla ściskanych płyt wyko-

nanych z laminatów kątowych 
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CONCLUDING REMARKS 

The present study is a practical tool for engineering 

activities dealing with evaluating the degradation of real 

material structure. As it remains an open problem, it is 

connected with the total number of uncertain parame-

ters that should be considered in order to describe the 

real behavior of engineering structures with an accept-

able accuracy. However, it can be solved for each indi-

vidual problem only. 

In many practical situations, the realistic modeling 

of phenomena necessitates the use of irregularly 

shaped, nonlinear membership functions, concave or 

convex, continuous or discontinuous, especially since 

a designer intends to obtain a better approximation of 

the model variables. Nevertheless, the previously enu-

merated membership functions, particularly linear, 

triangular or trapezoidal are commonly used in fuzzy 

set applications, mainly for reasons of computational 

simplicity. The linear membership functions are also 

used in the mathematical formulations of optimization 

problems in a fuzzy environment. By using an identical 

methodology, it is possible to consider delaminations, 

first-ply-failure and buckling problems (in conjunction 

with FE analysis) for arbitrary types of laminated com-

posite structures having different types of material and 

geometric imperfections. 
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