We use COOKIES and other similar technologies that generate data for analyzes and statistics. You can block the saving of COOKIES by changing your browser settings. Detailed information about COOKIES and other technologies in Privacy policy.

COMPOSITES THEORY AND PRACTICE

formerly: KOMPOZYTY (COMPOSITES)

MICROSTRUCTURE, MECHANICAL PERFORMANCE AND WEAR BEHAVIOR OF AZ91D-B4C-ZrO2 HYBRID COMPOSITES

Singaiah Gali, Prasanna Prattipati

Quarterly No. 4, 2022 pages 219-224

DOI:

keywords: AZ91D, hybrid composite, zirconia, boron carbide, coefficient of friction, wear

article version pdf (0.64MB)

abstract The stir casting process was used to produce AZ91D magnesium alloy hybrid composites reinforced with boron carbide (B4C) and zirconia (ZrO2). The microstructure of the composites revealed heterogeneity in the reinforcing phase distribution. A pin-on-disc test was conducted to investigate the tribological features of the fabricated composites such as the wear and coefficient of friction under dry sliding conditions. Increased hardness was observed for the composites due to the dispersion of the reinforcement. The composite with 2 wt.% ZrO2 + 3 wt.% B4C exhibited a higher yield strength and increased tensile strength compared with the other specimens. It was observed that the addition of B4C and ZrO2 improved the wear resistance of the AZ91D alloy as reflected by the lower wear rate. Among all the specimens, the composite reinforced with 2 wt.% ZrO2 + 3 wt.% B4C has the highest wear resistance. Hence, it can be concluded from the present work that incorporating B4C and ZrO2 is a promising way to achieve better mechanical properties and wear properties of AZ91 composites.

Wykonanie: www.ip7.pl