We use COOKIES and other similar technologies that generate data for analyzes and statistics. You can block the saving of COOKIES by changing your browser settings. Detailed information about COOKIES and other technologies in Privacy policy.

COMPOSITES THEORY AND PRACTICE

formerly: KOMPOZYTY (COMPOSITES)

Predicting effect of fiber orientation on chosen strength properties of wood-polymer composites

Wiesław Frącz, Grzegorz Janowski

Quarterly No. 2, 2019 pages 56-63

DOI:

keywords: wood-polymer composites, numerical homogenization, micromechanical analysis, fiber orientation, injection molding process

article version pdf (1.66MB)

abstract The paper presents an assessment of the effect of fiber orientation on the strength properties of products made from wood-polymer composites by the injection molding process based on micromechanical analysis. For this purpose numerical analysis was carried out for the product model with geometry of the sample intended for the uniaxial tensile test. To determine the actual fiber orientation after the manufacturing process, the orientation tensor values were calculated using Autodesk Moldflow Insight 2016 software. The micromechanical calculations were performed using Digimat FE commercial code. The results (stress-strain characteristics) of the numerical simulations taking into account the calculated fiber orientation tensor were compared to the experiment. To produce the wood-polymer composite, the polypropylene polymer matrix was Moplen HP 648T. As the filler Lignocel C120 wood fibers made by Rettenmeier & Sohns company were applied. A composite with a 10 vol.% content of wood fibers in the polymer was manufactured in the extrusion process by means of a Zamak EHP 25 extruder. For specimen manufacturing a Dr. Boy 55E injection molding machine equipped with a two cavity injection mold was used. Before the numerical simulations the uniaxial tensile test was performed using a Zwick Roell Z030 testing machine. The specimens were tested at the speed of 50 mm/min according to the PN-EN ISO 527 standard. The obtained stress-strain characteristics were used as a verification criterion for further numerical analysis. Moreover, the mechanical properties of the same composite products were predicted for hypothetical fiber orientation types. It was noted that the selection of fiber orientation has a significant impact on the quality of the obtained results compared to the experiment.

Wykonanie: www.ip7.pl