We use COOKIES and other similar technologies that generate data for analyzes and statistics. You can block the saving of COOKIES by changing your browser settings. Detailed information about COOKIES and other technologies in Privacy policy.

COMPOSITES THEORY AND PRACTICE

formerly: KOMPOZYTY (COMPOSITES)

Processing and structure of HDPE/glassy carbon composite suitable for 3D printing

Piotr Olesik, Mateusz Kozioł, Jakub Jała

Quarterly No. 2, 2020 pages 72-77

DOI:

keywords: HDPE, glassy carbon, composite, extrusion, 3D printing, FDM technology

article version pdf (0.46MB)

abstract The following paper discusses the studies of high-density polyethylene (HDPE) reinforced with glassy carbon (GC) particles. The conducted research focused on the processing properties of the material. Samples were made from extruded HDPE filament reinforced with GC. The granulate for extrusion was made by depositing GC particles on the surface of HDPE granules in ethylene alcohol. The granulate was subsequently extruded in the form of a filament (1.6 mm in diameter). The filament was cut into smaller pieces, which were then prepared and examined using a light microscope. Density measurements and quantitative analysis were performed to examine the amount of glassy carbon in the samples. The measurements showed about a 1% volume of glassy carbon in the reinforced filament. The melt flow index was measured for the HDPE filament and HDPE filament reinforced with GC. The viscosity curves for the neat HDPE and the composite filament were determined. The reinforced HDPE filament was characterized by slightly lower flow parameters; however, the difference between the results was insignificant for material processing. The maximum feed rate of the prepared filament for the FDM 3D printing process was evaluated by mathematical modeling. The results show that both the prepared materials have a similar printing capability as commonly used PLA, only the composite filament should have a 1.4% lower feed rate than the neat HDPE.

Wykonanie: www.ip7.pl