STRESS AND FAILURE ANALYSIS OF COMPOSITE PLATES WITH A CIRCULAR HOLE SUBJECTED TO SHEAR LOADING. PART 2: RESULTS AND DISCUSSIONS
Abdelhak Khechai, Abdelouahab Tati, Mohamed-Ouejdi Belarbi, Fares Mohammed Laid Rekbi
Quarterly No. 4, 2022 pages 225-232
DOI:
keywords: anisotropic plates, stress concentration, circular cutout, failure criterion, shear loading
abstract This paper, the second part of two parts of a complete paper, presents the analytical and numerical results of stresses around circular cutouts in anisotropic and isotropic plates under shear loading. The main aim of this study is to understand the effect of the presence of cutouts on the stress concentration and failure mechanisms in composite laminates. The numerical investigations are performed by means of the quadrilateral finite element of four nodes with thirty-two degrees of freedom. The present finite element is a combination of two finite elements. The first one is a simple linear isoparametric membrane element and the second one is a high-precision rectangular Hermitian element. The analytical and finite element formulations were presented in the first part of the paper. Several new examples are considered to demonstrate and affirm the accuracy and the performance of the present element and to highlight the effect of some parameters on the stress distributions. The numerically obtained results are found to be in good agreement with the analytical findings. On the other hand, first ply failure (FPF) strengths in laminates with and without holes are calculated by adapting the Hashin-Rotem, Tsai-Hill, and Tsai-Wu failure theories. Finally, the numbers of the figures are obtained, using various E1/E2 ratio values, for the maximum positive and negative stresses values located in the vicinity of the cutout versus the angular location of points, and for various fiber orientation angles.