We use COOKIES and other similar technologies that generate data for analyzes and statistics. You can block the saving of COOKIES by changing your browser settings. Detailed information about COOKIES and other technologies in Privacy policy.

COMPOSITES THEORY AND PRACTICE

formerly: KOMPOZYTY (COMPOSITES)

THERMAL CHARACTERIZATION OF CURING PROCESS IN UNSATURATED POLYESTER RESIN BASED POLYMER CONCRETE

Jakub Smoleń, Klaudia Tomaszewska, Debela Geneti Desisa

Quarterly No. 3, 2022 pages 166-171

DOI:

keywords: curing process, polymer concrete, polyester resin, composites

article version pdf (1.30MB)

abstract This paper presents a description of the temperature changes that take place in the curing system of polymer concrete. The research used polymer concrete composed of 30% by volume unsaturated polyester resin acting as a binder for powder fillers. Among the powder fillers, ground glass waste and sand in a volume ratio of 1:1 were used. The investigations were carried out for three volumes, 10, 100 and 1000 cm3, respectively. The temperature in the central point of the volume (the highest temperature) was measured by the ATD method using a NiCr-NiAl thermocouple, and the temperature on the polymer concrete surface was measured using a thermal imaging camera. The temperature-time course recorded for both the measuring points allowed evaluation of the curing system parameters (gelation time, maximum curing temperature, time to maximumtemperature), important for the processing of polymer concrete. Additionally, the knowledge of the temperature curves enabled a mathematical description of the heat flow between the measuring points. The conducted studies proved that the volume of the mold is important for the maximum temperature and curing time. The work is a continuation of previous research focused on polymer concrete and is an extension of information oriented to the industrial aspect. Knowledge of the temperature peaks and curing time will allow adjustments to be made to the manufacturing processes.

Wykonanie: www.ip7.pl